Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Composite polymer electrolytes that incorporate ceramic fillers in a polymer matrix offer mechanical strength and flexibility as solid electrolytes for lithium metal batteries. However, fast Li+ transport between polymer and Li+-conductive filler phases is not a simple achievement due to high barriers for Li+ exchange across the interphase. This study demonstrates how modification of Li7La3Zr2O12 (LLZO) nanofiller surfaces with silane chemistries influences Li+ transport at local and global electrolyte scales. Anhydrous reactions covalently link amine-functionalized silanes [(3-aminopropyl)triethoxysilane (APTES)] to LLZO nanoparticles, which protects LLZO in air. APTES functionalization lowers the poly (ethylene oxide) (PEO)-LLZO interphase resistance to half that of unmodified LLZO and increases effective Li+ transference number, while insulating Al2O3 completely blocks ion exchange and lowers transference number and conductivity in PEO-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-LLZO composites. Modeling an inner resistive interphase between LLZO and PEO surrounded by an outer conductive interphase explains non-linear conductivity trends. Solid-state 7Li & 6Li nuclear magnetic resonance shows Li+ only exchanges between PEO-LiTFSI and some LLZO interphase, with no appreciable Li+ transport through bulk LLZO. Surface functionalization is a promising path toward lowering the polymer-ceramic interphase resistance. This work demonstrates that local changes in Li+ transport affect macroscopic performance, highlighting the intricate relationships between all interfaces in inherently heterogeneous composite polymer electrolytes.more » « lessFree, publicly-accessible full text available January 23, 2026
-
Transient nanoclusters in aqueous ZnSO4electrolytes are revealed with X-ray scattering and molecular dynamics simulations. These nanoclusters exhibit diverse sizes and geometries, influencing ion correlations and transport properties.more » « lessFree, publicly-accessible full text available October 6, 2026
-
Abstract Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 sstate to hybridized Li-s/Ti-dorbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.more » « less
An official website of the United States government
